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As experiment shows, one form of failure of an ideal crystal in tension is the shear 
failure, which is characterized by the formation of a slippage system [i, 2] in the case when 
the Schmidt factor differs from zero, that is, when the direction of tension makes an angle 
of 5-85 ~ with the slippage plane. 

However, it can be expected that under some conditions, plastic deformation can develop, 
when the Schmidt factor equals zero. We will call this case, when the direction of tension 
is perpendicular to the slippage plane, the limiting case. This case was investigated theo- 
retically [3, 4] by studying the loss of stability under shear of a plane ideal crystal whose 
atoms were located in the (Iii) plane of a metal with a face-centered cubic structure or in 
the (0001) plane of a metal with a hexagonal close-packed structure. The Lennard--Johnson 
potential, which is basically characteristic of inert gases, was chosen as the potential for 
interatomic interactions. 

Here we construct a model, which characterizes the loss of stability of a plane ideal 
crystal under tension in the limiting case. The atomic lattice of the crystal corresponds 
to the (ii0) plane of a metal with a face-centered cubic structure. In the investigation, 
the interatomic potential was chosen in the most general form [4, 5]. 

We examine a plane ideal crystal with a lattice translation a along the Ox axis and 
a//~ along the Oy axis. The crystal is stretched by a uniformly distributed load of in- 
tensity q along the Ox axis (Fig. I). 

We will assume that the interaction forces between the atoms are potential forces and 
act only with neighboring atoms. When the crystal is loaded, atoms lying on the vertical 
(Fig. la) relative to each other do not slip and always remain in one line (Fig. ib). Then 
the plane crystal can be replaced by a mechanical model, which consists of vertical weight- 
less rods with point masses, which are interconnected by nonlinear spings (dotted lines), 
whose anchor points coincide with the position of the atoms in the atomic lattice. The 
force, which acts on the spring side of the atom, is equal to the interatomic potential force 
a, and the potential energy of the spring equals the interatomic potential v [4, 5]~ The 
form of o and v as functions of the interatomic distance p in a crystal with a lattice 
translation b is shown in Fig. 2 (o m is either the maximum interaction force of two atoms 
or the ultimate resistance). Consequently, we represent the crystal deformation under ten- 
sion in the form of a horizontal displacement and a rotation by an angle 8 of the rods in 
the plane of the drawing, as shown in Fig. lb. 

With the limitations above, it is not difficult to see that the behavior of the whole 
crystal is characterized by the behavior of an elementary cell, which consists of four atoms 
and three nonlinear springs (Fig. 3a). When the cell is loaded with an applied force P, its 
position is determined with the use of the generalized coordinates r and 8 (Fig. 3b). 

We now examine the behavior of a cell loaded with a force P. It should be expected 
that for small values of P, the rod BIB 3 has a single stable equilibrium position 0 = 0. 
When P reaches some critical value Pc, three equilibrium positions of BIB ~ are possible: an 
unstable one, corresponding to 8 = 0, and two stable ones for which BIB 3 makes an angle 
8 = • c ~ 0 with the vertical. This point is a branching point or a bifurcation point. 
With further loading, the cell has two stable equilibrium positions (8 = • 0) and one 
unstable position (0 = 0). 

A slowly loaded crystal behaves similarly: as q grows from zero to qc, the vertical 
chains of atoms translate along the Ox axis parallel to the Oy axis, and when q reaches 
a critical value qc, the chains of atoms rotate through an angle 8 c or -8 c and thereafter 
develop shear deformations. 
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By using the Lagrange-Dirichlet, Lyapunov, and Chetaev theorems [6] and the methods in 
[4, 7], we derive theconditions for loss of stability of the atomic axis. We write the 
potential energy H of the elementary cell as 

3 

n = E ( p D  - Pr, 

where Vs(Ps) is the potential energy for the interaction of atom B 4 with the atoms B s (s = 

1, 2, 3); 9a = B~B4 = V  a2/2 + r 2 - -  a r ] / 2 s i n 0 ;  92 = B2B4 = r ;  and P3 = BaB4 = ~#a~12 + r 2 + ar ] /2sin 0. The 
equilibrium conditions have the form 
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Here the indices of the function ~ indicate partial derivatives with respect to the corre- 
sponding variables. 

The value of the potential energy ~ in the equilibrium position determines its stability 
or instability [6]: if the potential energy takes a minimum value in the equilibrium posi- 
tion, then the equilibrium position is stable; but if the potential energy does not have a 
minimum in the equilibrium position, then, according to the theorems of Lyapunov and Chetaev, 
the equilibrium position is unstable. The presence of a minimum ~ is established through 
the second partial derivatives in the generalized coordinates. We write a matrix A, whose 
elements are the stability coefficients (second partial derivatives of ~ with respect to the 
generalized coordinates): 

rH~ H~o] 
A = LHo~ HooJ" 

If the matrix A is positive definite, the equilibrium position in question is stable. 
The point at which this condition is not fulfilled is a bifurcation point. 

We now calculate the stability coefficients: 

, : ,  Lor>  

HrO= Or dO +--0-~Jl 
-~2s ~ Ou s 

Ovs o2P~l 
+ j ,  (2 )  

Because we are interested in the stability of the vertical position of the rod BIB3, we 
will investigate the stability of the equilibrium position 0 = 0. We find the derivatives in 
Eqs. (2) for 0 = 0. Because of symmetry of the cell at % = 0, we have Hr@ = HSr = 0; there- 
fore, the stability is determined by the signs of ~rr and H@@: if Hrr > 0 and H@8 > 0, then 
the equilibrium position is stable; if one of the inequalities is not fulfilled, then the equi- 
librium position transforms from a stable to an unstable one. The point at which ~08 = 0 is 
the point where the rod BIB 3 starts to rotate; that is, shear deformation begins to develop in 
the plane crystal. 

Having substituted the values of Ps and their derivatives onto [2], we obtain 

n~=~,+ 2 r2~+~ n00=7 ~- " (3) 
9-~ 

Here 91 = Ps = P = ]/a2/2 -~ r2; P2 = r; Oul/Opl = #u~/Opa -~ o; au2/ap2 = ~,: #~ua/09~ = o2us/op~ =o; and 82v2/ 
ap~ = o,. 

126 



a b 

jf 11 f m 

B~ B~ 

Fig. 3 Fig.  4 

From Eqs. (3) it follows that, under tension, Nrr does not become zero for any value of 
r. This condition is theoretically possible: practically the condition ~rr = 0 means failure 
of the crystal, because r > r m = V p~ - a2/2; that is, the crystal fails before Hrr = 0. 

The value of HOe becomes zero for p = Pc, where Pc is the solution to the equation 

-- o/p = O. (4) 

Consequently, the rotation of the rod BIB 3 occurs when the generalized coordinate r attains a 
value r c = fp~ - a2/2. Because the explicit form of the interatomic interaction is not al- 
ways known and an analytical solution of (4) is difficult to find, a geometric solution is 
shown in Fig. 4 for clarity. From the form of the function o(p), it follows that Pc < Pm, 
and therefore shear deformations occur before the interaction force reaches the ultimate 
resistance Pm" 

Having determined Pc from Eq. (4) and substituted the results into (!), we find the 
critical applied force Pc = o, § (2r/p).o, where r = rc, p = Pc, o, = o,(rc) , and o = O(pc). 

The theoretical calculations presented here show that under some conditions shear de- 
formations can develop even in the limiting case, that is, when the direction of tension is 
perpendicular to the slippage plane. In the first stage of failure (q < qc), the deformation 
primarily develops due to a change in the mutual position of the vertical chains of atoms; 
but in the second (q = qc), rotation of the densely packed chains occurs with destruction of 
the crystal symmetry, and thereafter deformation develops due to shear displacements. 

Note. The discussion presented can properly be applied to the case where o,(r c) < O,m 
(O,m is the ultimate resistance of the atoms B 2 and B4). 
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